
Computer simulation of solid-liquid coexistence in binary hard-sphere mixtures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 7735

(http://iopscience.iop.org/0953-8984/1/41/026)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 20:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/41
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 1 (1989) 7735-7739. Printed in the UK 

LETTER TO THE EDITOR 

Computer simulation of solid-liquid coexistence in 
binary hard-sphere mixtures 

W G T Kranendonk and D Frenkel 
FOM Institute for Atomic and Molecular Physics, PO Box 41883,1009 DB Amsterdam, 
The Netherlands 

Received 16 August 1989 

Abstract. We report the first numerical simulation of the melting curve of a binary mixture. 
The melting curves of binary hard-sphere mixtures with diameter ratios CY = 0.95 and 0.90 
were obtained by Monte Carlo simulation. For CY = 0.95 the phase diagram is found to be 
spindle-like; for a = 0.90 it exhibits an azeotrope. We compare these findings with pre- 
dictions based on density-functional theory. 

One of the key problems in statistical mechanics is that of obtaining a simple, yet reliable 
estimate of the melting point of an atomic or molecular solid for which the intermolecular 
potential is known. 

In recent years, several authors have applied density-functional theory to compute 
the melting point of atomic solids (for a review, see [l]). On the whole it appears that 
density-functional theory is quite successful (although not entirely without flaws) in 
describing the melting of atomic systems. A case where density-functional theory has 
been applied with considerable success is in the description of the melting transition of 
the hard-sphere system. For the latter system, second-order density-functional theory 
predicts [2] that at coexistence qf = 0.51, qs = 0.56 and PVo/NkT = 11.2, which should 
be compared with the simulation results of Hoover and Ree [3]: qf = 0.494, qs = 0.545 
and PVo/NkT = 8.27 (k0.13). N/Vo  is the density of regular close packing of the hard- 
sphere solid, q is the volume fraction occupied by the spheres and the subscripts s and f 
refer to the solid and fluid phase respectively. 

Encouraged by the good results obtained with density-functional theory for the 
pure (monodisperse) hard-sphere system, several authors have recently considered 
extensions of the second-order theory to polydisperse systems. In particular, the phase 
diagram for binary mixtures of nearly monodisperse hard spheres has been calculated 
by Barrat, Baus and Hansen [4] and by Smithline and Haymet [5] .  Barrat et aZ[4] only 
considered the melting behaviour of substitutionally disordered FCC lattices. Rick and 
Haymet [5]  also considered crystalline phases with long-range substitutional order, but 
found these to be only metastable. The calculations of [4] and [5]  suggest that a change 
in the diameter ratio a of the spheres of only 15% has a dramatic effect on the phase 
diagram. In particular, the melting curve changes from spindle-like close to a = 1 
through azeotropic below a = 0.94 to eutectic for a < 0.92. Throughout the present 
paper a denotes the ratio of the diameter of the smaller spheres to that of the larger 
ones, while X i s  defined as the molar fraction of the large particles. 
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The first numerical study of the melting point of a monodisperse three-dimensional 
solid was published over 20 years ago [3]. Surprisingly enough, no simulation study has 
(to our knowledge) yet been reported on the melting of binary mixtures, even though 
fluid binary mixtures have been studied extensively by simulation. In the simulations of 
binary hard-sphere mixtures by Jackson, Rowlinson and van Swol [6] spontaneous 
solidification was observed, but no attempt was made either to determine the structure 
of the resulting phase or to locate the coexistence point. 

Below we present the first numerical determination of the melting curve of a binary 
system, namely a mixture of hard spheres. The results obtained in these simulations 
allow us to test the quality of the corresponding predictions of density-functional theory. 
We have carried out simulations for two diameter ratios in the range that is of most 
interest for a comparison with density-functional theory-that is, a = 0.95 and a = 0.9. 

We now describe the simulations. Equation-of-state data for the hard-sphere mix- 
tures were obtained by both constant-pressure Monte Carlo (NPTMC) and by con- 
ventional molecular dynamics (MD) simulations. To improve the sampling over the 
configuration space, we included Monte Carlo trial moves in which an attempt was made 
to permute a large and a small particle chosen at random. These particle permutations 
were done both in the MC (typically, once every cycle) and in the MD runs (typically, one 
permutation per 100 collisions). Clearly, these particle-swapping moves make our MD 
simulations non-deterministic. For our purpose this was not serious as we did not attempt 
to compute transport properties. 

Because the diameter ratio a is always close to unity, the acceptance of particle- 
swapping moves is relatively high. For example, at a density p = 1.1, a molar fraction 
X = 0.5 and a diameter ratio a = 0.90,45% of all attempted particle swaps in the solid 
were accepted. 

Particle-swapping moves are particularly important for simulations of crystalline 
solids where diffusion is negligible. Without particle interchanges, the initial distribution 
of large and small particles over the lattice would effectively be frozen for the entire 
duration of the simulation. 

In our simulations of the solid phase, we initially prepare the system in a face-centred 
cubic (FCC) lattice without defects or vacancies: the large and small particles are initially 
distributed randomly over the lattice sites. However, during the equilibration run 
correlations in the particle positions may build up. Cubic periodic boundary conditions 
were used in all simulations. If we consider this system as a sample drawn from an infinite 
lattice, we may thenview the process of interchanging particles as a technique that allows 
us to take different samples from the infinite lattice. However, since we keep the total 
the number of small and large spheres in the simulation box constant we do neglect 
concentration fluctuations with a wavelength larger than the box size. 

The equation-of-state data for both the liquid and the solid mixtures were obtained 
in simulations on a system containing 108 particles. In the MC simulations the system was 
equilibrated for some (0.5-1) X lo4  cycles (i.e. trial moves per particle). The actual 
production runs took some 1.5 X lo4 MC cycles. During the MD simulations the system 
was equilibrated during (0.6-1) X lo5 collisions. The thermodynamic data of interest 
were collected over the next (3-4) X lo5 collisions. In all cases, the initial configuration 
for a simulation was the final, well equilibrated, configuration of a previous run at an 
adjacent state point. More details will be given in a subsequent publication [7]. 

For the hard-sphere mixture with a diameter ratio a = 0.95 we computed the 
equation of state of the fluid at six different compositions ( X  = 0 (= l), 0.2,0.4,0.5,0.6 
and 0.8). The fluid branch for a = 0.90 was computed at seven different compositions: 
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X = O (  = l), 0.1,0.2,0.4,0.5,0.6and0.8. The equationof stateofthesolid wascomputed 
at six (nine) different compositions for a = 0.95 (0.90). Typically we computed some 
ten to twelve points on every solid branch and fifteen points per fluid branch. 

The second step in the determination of the phase diagrams is the calculation of the 
Gibbs free enthalpy in both the liquid and the solid. The basic idea is that we always 
want to construct a reversible path between a reference state, for which we know the 
value of the (excess) Gibbs free enthalpy, and the thermodynamic state, for which 
we want to know this enthalpy. For the liquid we can directly apply thermodynamic 
integration [8]. For the solid state accurate values of the free energy for the monodisperse 
FCC lattice have been calculated by Frenkel and Ladd [9] at two different densities. We 
have employed two independent methods to relate the free energy of a FCC solid solution 
at an arbitrary composition X t o  that of the monodisperse solid. The first technique is a 
particle-swapping method, similar in spirit to the Widom particle-insertion method 
[8,10]. The difference in free energy between a system of N I  small particles and N 2  large 
particles and a system of N1 - 1 small particles and N 2  + 1 large particles at the same 
volume fraction follows from the ratio of the acceptance of virtual trial moves that 
transform the former system into the latter to the acceptance of the reverse trial moves. 
The second method for measuring the free energy of a solid solution uses a direct 
thermodynamic integration scheme. In this method we start with a solid solution of 
equal-sized particles at composition X. We thereupon compute the reversible work 
needed to change the diameter ratio of the particles from 1 to a. The ‘force’ conjugate 
to a change in a is easily computed in a MD simulation. Again, more details will be given 
in [7]. 

In order to locate the melting curve in a binary mixture of species 1 and 2, we must 
know the pressure and the chemical potentials of the individual species in both phases. 
The latter quantities are most easily determined from the molar Gibbs free enthalpy 
G = X p 2  + (1 - X ) p l  in combination with the relation: 

The melting curve follows from the conditions p1,, = pl,f, p2,s =  and P, = Pf. 
We now go on to give the results. Figure 1 shows the phase diagram for a binary 

mixture of hard spheres with diameter ratio a = 0.95 as obtained by the present simu- 
lations. Note that our results for the melting point of monodisperse hard spheres qy = 
0.546, qf = 0.493, PVo/NkB T = 8.29 ( k 0.06) agree very well with the Hoover and Ree 
results. 

In figure 1 we have also indicated the predictions of density-functional theory given 
in [4]. The qualitative agreement is quite striking. In particular, the computer simulations 
confirm the spindle-type phase diagram predicted theoretically. Moreover, theory and 
simulation are in agreement about the width of the spindle (i.e. about the composition 
of the coexisting phases). Note, however, that there is a large discrepancy between the 
coexistence pressure found in the simulations and the value predicted theoretically. 
Actually, this problem is not confined to binary systems: even for a monodisperse 
system, for the compressibility relation that was used in [4], the coexistence pressure 
was overestimated by some 30% [2]. More serious is the fact that the density-functional 
theorydoes not reproduce the behaviour of the density jump at melting that we find in the 
simulations. Density-functional theory predicts that the density jump for the mixtures is 
larger than for the pure systems. The simulations show exactly the opposite trend (see 
figure 2 ) .  
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Figure 1. Phase diagram of a binary hard-sphere 
mixture fordiameterratio a = 0.95.Xis themolar 
fraction. Triangles represent the results obtained 
from the present computer experiments. The full 
curve gives the theoretical prediction [4]. Because 
of the large discrepancy between the melting 
pressure of monodisperse hard spheres obtained 
by computer simulation and density-functional 
theory (see text), the ordinate axis for the coexist- 
ence pressures predicted by density-functional 
theory (left) has been scaled and shifted with 
respect to the pressure axis of the simulation 
results (right). The pressure is expressed in units 
k , T / d , ,  where o2 is the diameter of the larger 
sphere. The arrows in the figure indicate the label- 
ling of the axes. 
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Figure 2. Relative difference in the packing frac- 
tion at phase coexistence for a hard-sphere mix- 
ture with diameter ratio a = 0.95. qs:  packing 
fraction of the solid; q+ packing fraction of the 
liquid. Xfis the molar fraction of large particles in 
the liquid. The full curve is the theoretical pre- 
diction of [4]. The computer simulation data are 
represented by triangles. The broken curve is 
drawn as a guide to the eye. 

Next consider the simulations for the diameter ratio a = 0.90. For a < 0.92 density- 
functional theory predicts that the phase diagram should exhibit a eutectic. No such 
behaviour is observed in our simulations (see figure 3). Rather than a two-phase region 
with a eutectic point at X = 0.13, we observe a phase diagram with an azeotropic point 
at X = 0.22. 

Hence we see that for a = 0.90 the discrepancies between density-functional theory 
and computer simulation are even more serious than for a = 0.95. Tests for hard-sphere 
mixtures with LY < 0.90 and for crystal structures other than FCC are currently under way. 

The present findings cast doubt on the applicability of second-order density-func- 
tional theory for the prediction of melting lines in binary mixtures. It would be very 
interesting to see whether a third-order density-functional theory such as the one recently 
proposed by Barrat et a1 [ll] is in better agreement with the simulation results. It seems 
a sad but inescapable conclusion that the simpler (and therefore more popular) second- 
order density-functional theories are distinctly better in predicting melting behaviour a 
posteriori than a priori. 

The investigations reported in this paper were supported in part by the Netherlands 
Foundation for Chemical Research (SON) with financial aid from the Netherlands 
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Figure 3. Phase diagram of a binary hard-sphere mixture for diameter ratio (Y = 0.90. For 
the sake of clarity the predictions of density-functional theory and the simulation results have 
been drawn separately. The left-hand diagram shows the results obtained from computer 
experiments (triangles). The diagram on the right shows the theoretical prediction of Barrat 
et a1 [4]. Note that the simulations indicate the presence of an azeotropic point, whereas the 
theory predicts eutectic behaviour. 

Organisation for Scientific Research (NWO). The work of the FOM Institute is part of 
the scientific program of FOM and is supported by the Netherlands Organisation for 
Scientific Research (NWO). 
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